澳门大阳城娱乐登录 - 官网welcome

教师库
    当前位置: 澳门大阳城娱乐登录 >> 正文
    田凯

    田凯

     

    民族:汉   性别:男     职称:副教授

    出生日期:198211月  Email: tiankai@cumtb.edu.cn

       

    个人履历

    (1) 20117月~,中国矿业大学(北京)澳门大阳城娱乐登录 教师

    20161月~20171月,University of Kent (U.K.),访问学者

    (2) 20089月~20117月,中科院数学与系统科学研究院 博士 专业:应用数学

    (3) 20059月~20087月,中国矿业大学(北京)澳门大阳城娱乐登录 硕士 专业:应用数学

    (4) 20019月~20057月,中国矿业大学(北京)澳门大阳城娱乐登录 学士 专业:信息与计算科学

       

    教学课程

    (1) 本科生课程: 《概率论与数理统计》、《线性代数》、《高等代数2

    (2) 研究生课程: 《可积系统》、《线性代数与矩阵论》、《对称与微分方程》

     

    承担教学改革项目

    (1) 中国矿业大学(北京)教学项目:《线性代数》教学内容改革和资源建设J180714),20183月至202010月,负责,已结题

     

    教学获奖

    (1) 2014-2015学年校级优秀教学质量奖二等奖

    (2) 2018年度校级优秀教学成果奖一等奖(排名第五)

    (3) 2021年度校级研究生优秀教学成果奖一等奖(排名第三)

    (4) 2020-2021学年校级优秀本科生全程导师奖

    (5) 2022年校级优秀教学质量奖一等奖

     

    研究方向

    可积系统及其应用

     

    承担参与科研项目

    (1) 中央高校基本科研业务费:超对称可积系统的研究2011QS02),20119201912月,负责,已结题

    (2) 国家自然科学基金——天元基金:超对称可积系统与反向变换11226197),20131月至201312月,负责,已结题

    (3) 教育部博士点基金(新教师类):超对称Harry Dym型方程的研究2012002312000620131月至201512月,负责,已结题

    (4) 国家自然科学基金面上项目:超对称可积系统:对称与变换11271366),20131月至201612月,参加,已结题

    (5) 国家自然科学基金重点项目:可积系统的代数与几何结构1133100820141月至201812月,参加,已结题

    (6) 国家自然科学基金青年基金:超对称可积系统:master对称Cartan-Maurer方程11505284),20161月至201812月,负责,已结题

    (7) 国家自然科学基金重点项目:离散可积系统11931017),20201月至202412月,参加

    (8) 国家自然科学基金面上项目:非标准型超(及超对称)可积方程的研究12171474),20221月至202512月,负责

     

    学术论文

    [1] Hanyu Zhou, K. Tian and Nianhua Li, Four super integrable equations: nonlocal symmetries and applications, J. Phys. A: Math. Theor. 55(2022) 225207 (24 pages). https://doi.org/10.1088/1751-8121/ac6a2b

    [2] K. Tian, Mengyuan Cui and Q. P. Liu, A note on Bäcklund transformations for the Harry Dym equation, Partial Differential Equations in Applied Mathematics 5(2022) 100352 (3 pages).  https://doi.org/10.1016/j.padiff.2022.100352

    [3] Nianhua Li and K. Tian, Nonlocal symmetries and Darboux transformations of the Camassa–Holm equation and modified Camassa–Holm equation revisited, J. Math. Phys. 63(2022) 041501(8 pages).   https://doi.org/10.1063/5.0085540

    [4] Hanyu Zhou and K. Tian, Integrable super extensions of K(-2,-2) equation, Theor. Math. Phys, 210(2022) 353—362.   https://doi.org/10.1134/S0040577922030059

    [5] K. Tian and Hanyu Zhou, On a fermionic extension of K(−1, −2) equation, Commun. Nonlinear Sci. Numer. Simulat. 108(2022) 106237(9 pages). https://doi.org/10.1016/j.cnsns.2021.106237

    [6] Binfang Gao, K. Tian and Q. P. Liu, A super Degasperis-Procesi equation and related integrable systems, Proc. R. Soc. A 477(2021) 20200780(17 pages) https://doi.org/10.1098/rspa.2020.0780

    [7] K. Tian, Q. P. Liu and Wenjun Yue, Two super Camassa-Holm equations: reciprocal transformations and applications, J. Math. Phys. 61(2020) 043503(12 pages). https://doi.org/10.1063/1.5134097

    [8] Binfang Gao, Q. P. Liu and K. Tian, A super Sawada-Kotera hierarchy, Appl. Math. Lett. 106(2020) 106350(8 pages). https://doi.org/10.1016/j.aml.2020.106350

    [9] K. Tian, Binfang Gao, Q. P. Liu and Chen Chen, On Kupershmidt’s extended equation of dispersive water waves, Appl. Math. Lett. 92(2019) 121—127. https://doi.org/10.1016/j.aml.2019.01.012

    [10] Binfang Gao, K. Tian and Q. P. Liu, Some super systems with local bi-Hamiltonian operators, Phys. Lett. A 383(2019) 400—405. https://doi.org/10.1016/j.physleta.2018.11.011

    [11] Binfang Gao, K. Tian, Q. P. Liu and Lujuan Feng, Conservation laws of the generalized Riemann equations, J. Nonlinear Math. Phys. 25(2018) 122—135. https://doi.org/10.1080/14029251.2018.1440746

    [12] K. Tian, K(m,n) equations with fifth order symmetries and their integrability, Commun. Nonlinear Sci. Numer. Simulat. 56(2018) 490—498. https://doi.org/10.1016/j.cnsns.2017.08.023

    [13] K. Tian and J. P. Wang, Symbolic representation and classification of N=1 supersymmetric evolutionary equations, Stud. Appl. Math. 138(2017) 467—498.  http://dx.doi.org/10.1111/sapm.12163

    [14] Mengxia Zhang, K. Tian and Lei Zhang, The tri-Hamiltonian dual system of supersymmetric two boson system, Phys. Lett. A 380(2016) 3073—3080. http://dx.doi.org/10.1016/j.physleta.2016.07.035

    [15] K. Tian and Q. P. Liu, Conservation laws and symmetries of Hunter-Saxton equation: revisited, Nonlinearity 29(2016) 737—755.    http://dx.doi.org/10.1088/0951-7715/29/3/737

    [16] K. Tian and Q. P. Liu, Behaviors of N=1 Euler derivatives and Hamiltonian operators under general superconformal transformations, J. Geom. Phys. 83(2014) 69—81. http://dx.doi.org/10.1016/j.geomphys.2014.05.029

    [17] K. Tian and Q. P. Liu, Tri-Hamiltonian duality between the Wadati-Konno-Ichikawa hierarchy and the Song-Qu-Qiao hierarchy, J. Math. Phys. 54(2013) 043513(10 pages). http://dx.doi.org/10.1063/1.4801858

    [18] K. Tian and Q. P. Liu, Two new supersymmetric equations of Harry Dym type and their supersymmetric reciprocal transformations, Phys. Letts. A, 376(2012) 2334-2340. http://dx.doi.org/10.1016/j.physleta.2012.06.003

    [19] K. Tian and Q. P. Liu, The transformations between N = 2 supersymmetric Korteweg-de Vries and Harry Dym equations, J. Math. Phys. 53(2012) 053503(8 pages). http://dx.doi.org/10.1063/1.4711770

    [20] K. Tian, Z. Popowicz and Q. P. Liu, A non-standard Lax formulation of the Harry Dym hierarchy and its supersymmetric extension, J. Phys. A: Math. Theor. 45(2012) 122001(8 pages). http://dx.doi.org/10.1088/1751-8113/45/12/122001

    [21] Q. P. Liu, Z. Popowicz and K. Tian, The even and odd supersymmetric Hunter-Saxton and Liouville equations, Phys. Letts. A 375(2010) 29—35. http://dx.doi.org/10.1016/j.physleta.2010.10.033

    [22] Q. P. Liu, Z. Popowicz and K. Tian, Supersymmetric reciprocal transformation and its applications, J. Math. Phys. 51(2010) 093511(24 pages). http://dx.doi.org/10.1063/1.3481568

    [23] K. Tian and Q. P. Liu, Supersymmetric fifth order evolution equations, in Nonlinear and Modern Mathematical Physics, AIP Conference Proceedings 1212(2010) 81—88. https://doi.org/10.1063/1.3367084

    [24] K. Tian and X. B. Hu, Negative semi-discrete KP and BKP hierarchies via nonlocal symmetries, J. Phys. A: Math. Theor. 42(2009) 454022(12 pages). http://dx.doi.org/10.1088/1751-8113/42/45/454022

    [25] K. Tian and Q. P. Liu, A supersymmetric Sawada-Kotera equation, Phys. Letts. A 373 (2009) 1807—1810. https://doi.org/10.1016/j.physleta.2009.03.039

     

     

     

    (更新时间:20226月)